

## Wireless Passive SAW Identification Marks and Sensors

#### Leonhard M. Reindl

Institute of Electrical Information Technology

Clausthal University of Technology



## Acknowledgement

The research and development project, which is presented in this tutorial, was carried out within the last years in the Corporate Technology Department of Siemens AG, Germany.

The author would like to thank W.-E. Bulst and M. Guntersdorfer for continuously encouraging this work, and C.C.W. Ruppel, W. Ruile, G. Scholl, F. Schmidt, T. Ostertag, and V. Magori for their important contributions as well as J. Hornsteiner, C. Kordon, O. Sczesny, E. Riha, C. Seisenberger, M. Vossiek, and U. Wolff for their valuable contributions. Special thanks to W. Gawlik, U. Knauer, J. Zimmermann, S. Berek, B. Bienert, H. Zottel, T. Sofronijevi'c, and K. Riek for the manufacture of the SAW devices.

Very important contributions were developed at the Applied Electronics Laboratory of the University of Technology in Vienna, Austria by my teacher F. Seifert, by A. Pohl, R. Steindl, G. Ostermayer, and C. Hausleitner, and the students there, at the Institute for Communications and Information Engineering of the University of Linz, Austria, by R. Weigel, H. Scherr, T. Pankratz, and G. Schimetta, and at the Institute for Measurement Systems and Sensor Technology of the Technical University of Munich, Germany, by E. Schrüfer, and K. Pistor.

Thanks to A. Kirmayr from the University of Applied Sciences, Munich, for his

**T**echnische Universität Clausthal

## Outline

- Introduction: Classical SAW Sensors
- SAW Radio Read Out
- SAW Identification Tags
- SAW Radio Readable Sensors
- Application Examples
- Conclusion



## Surface Acoustic Waves (SAW's)



At the same frequency, the acoustic wavelength is 10<sup>-5</sup> times that of electromagnetic waves.



## Seismologic surface acoustic wave

San Francisco, City Hall



April 17, 1906

April 18, 1906



L. Reindl, TU Clausthal, IEI, Page 5

## History of SAW

- 1885 Lord Rayleigh characterizes Surface Acoustic Waves (earth quake)
- 1965 Invention of the Interdigital Transducer (White/Voltmer)
- 1970 First applications: pulse expansion and compression in radar systems
- **1985** SAW filters replace LC filter in TVs and VCRs
- 1990 SAW filters allow for miniaturization of mobile phones



### Wave Excitation and Detection: IDTs



Top view



Cross sectional view A-B

#### Interdigital Transducer (IDT) as

- transmitter: converse piezoelectric effect  $\Rightarrow$  electric RF field generates SAW
- receiver: piezoelectric effect  $\Rightarrow$  SAW generates electric RF field

In both cases maximum coupling strength for  $\lambda_{\text{SAW}} = v_{\text{SAW}} / f = 2 \cdot p ~(\sim 1...10 \ \mu\text{m})$ 

# SEM-photo of an interdigital transducer and two SAW pulses



L. Reindl, TU Clausthal, IEI, Page 8

# Properties of some commonly used substrata materials

| Materia            | l Orienta | ation <sup>1)</sup> | Wave type    | v <sub>ph</sub> | <i>k</i> <sup>2</sup> | TCD      | Loss (d     | lb/μs)  |
|--------------------|-----------|---------------------|--------------|-----------------|-----------------------|----------|-------------|---------|
|                    | Cut       | Prop.               |              | (m/s)           | (%)                   | (ppm/°C) | 433 MHz     | 2.45GHz |
| Quartz             | ST        | Х                   | gen. RW      | 3158            | 0.1                   | 0        | 0.75        | 18.6    |
|                    | 37°rotY   | 90°rotX             | SH wave      | 5094            | ≈ <sub>0.1</sub>      | 0        | _ 3)        | -3)     |
| LiNbO              | 3 Y       | Ζ                   | pure RW      | 3488            | 4.1                   | 94       | 0.25        | 5.8     |
|                    | 41°rotY   | X le                | eaky SH wave | 4750            | 15.8                  | 69       | <b>_</b> 3) | -3)     |
|                    | 128°rotY  | X                   | gen. RW      | 3980            | 5.5                   | 75       | 0.27        | 5.2     |
| LiTaO <sub>3</sub> | 36°rotY   | X le                | eaky SH wave | 4220            | ≈6.6                  | 30       | 1.35        | 20.9    |
| 5                  | Х         | 112°rotY            | gen. RW      | 3301            | 0.88                  | 18       | -           | -       |

- 1) Cut = crystalline orientation of the substrate surface normal;
- 2) Prop. = crystalline orientation of the wave propagation direction.
- 3) Depends on metallization.

The design of SAW devices is based on

- **signal theory** (e.g. Impulse response modelling)
- **network theory** (e.g. P-Matrix-formalism, coupling of modes, equivalent circuit, angular spectrum of strait-crested waves)
- field theory (e.g. FEM)



### **P-Matrix Formalism**





Top view

$$\begin{pmatrix} b_1 \\ b_2 \\ i \end{pmatrix} = \mathbf{P} \begin{pmatrix} a_1 \\ a_2 \\ u \end{pmatrix} = \begin{pmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ u \end{pmatrix}$$

with P<sub>33</sub>: transducer admittance [conductance], P<sub>13</sub> and P<sub>23</sub>: stimulation elements [ $\sqrt{\text{conductance}}$ ], P<sub>11</sub> and P<sub>22</sub>: reflection elements [], P<sub>12</sub> and P<sub>21</sub>: transmission elements [].

## **SAW Device Modelling**



### **SAW Fabrication**



### **Fabrication - Electrode Widths**



European ISM bands: 434 MHz, 869 MHz, 2.45GHz, 5,8GHz



### **Classical SAW Band pass Filter**



### **Block Diagram of a Typical Transceiver**





## Sensitivity

A delay line with centre-to-centre transducer spacing L exhibits a delay time  $\tau$  of  $\tau = L/v$ . Hence, a small variation  $\Delta$  in a measurand x, like a variation of the

temperature  $\Delta T$  results in change of the delay time change  $\Delta \tau$  of

$$\frac{\Delta \tau}{\tau} (\Delta \vartheta) = \frac{\Delta L}{L} (\Delta \vartheta) - \frac{\Delta v}{v} (\Delta \vartheta)$$

$$= \frac{1}{L} \cdot \frac{\partial}{\partial} \frac{L}{\vartheta} \cdot \Delta \vartheta - \frac{1}{V} \cdot \frac{\partial}{\partial} \frac{V}{\vartheta} \cdot \Delta \vartheta$$
$$= \left( \mathbf{S}_{\mathrm{T}}^{\mathrm{L}} - \mathbf{S}_{\mathrm{T}}^{\mathrm{v}} \right) \cdot \Delta \vartheta \equiv S_{\mathrm{T}}^{\mathrm{\tau}} \cdot \Delta \vartheta \equiv TCD \cdot \Delta \vartheta$$



## Sensitivity

and

The sensitivity  $S_v^x$  gives the change of the parameter x on the quantity y

 $S_{\mathcal{Y}}^{\mathcal{X}} = \frac{1}{x} \cdot \frac{\partial x}{\partial v}$ 

For SAW devices a change of velocity v or delay length L results in a change of the electrical measurable quantities

delay time 
$$\tau$$
,  $\tau(y_0 + \Delta y) = \tau(y_0) \cdot \left[1 + S_T^{\tau} \cdot \Delta y\right]$   
corresponding phase  $\varphi$ ,  $\varphi(y_0 + \Delta y) = \varphi(y_0) \cdot \left[1 + S_T^{\tau} \cdot \Delta y\right]$   
and the centre frequency  $f: f(y_0 + \Delta y) = f(y_0) \cdot \left[1 - S_T^{\tau} \cdot \Delta y\right]$ 

#### Basic electronic circuitry for active SAW sensing





| Measurand           | Device | Freq. | Substrate          | Sensitivity |                           |                                                    |  |
|---------------------|--------|-------|--------------------|-------------|---------------------------|----------------------------------------------------|--|
|                     |        | (MHz) |                    | Value       | Unit                      | Selected SAW                                       |  |
| Pressure            | DL     | 105   | Quartz             | 3.8         | ppm/kPa                   | 1 • 1                                              |  |
|                     | DL     | 90    | AlN/Si             | 27          | ppm/kPa                   | nhysical sensor                                    |  |
| Force               | DL     | 8.3   | LiNbO <sub>3</sub> | 10.8        | ppm/kN                    | pilysical senser                                   |  |
| Strain              | R      | 140.2 | Quartz             | 1.28        | ppm/10 -6                 | frame litanature                                   |  |
|                     | DL     | 10.9  | PZT                | 21          | ppm/10 <sup>-6</sup>      | from meralur                                       |  |
| Position (linear)   | DL     | 8.3   | LiNbO <sub>3</sub> | 120.5       | ppm/ <sup>µ</sup> m       |                                                    |  |
| Position (angular)  | R      | 434   | Quartz             | 2.86        | ppm/mrad                  |                                                    |  |
| Acceleration        | DL     | 251   | Quartz             | 45          | $ppm/(m/s^2)$             |                                                    |  |
|                     | DL     | 10.9  | PZT                | 8.7         | $ppm/(m/s^2)$             |                                                    |  |
| Rotation rate       | DL     | 10.9  | PZT                | 25.7        | ppm/s <sup>-2</sup>       |                                                    |  |
| Flow rate (gas)     | DL     | 73    | LiNbO 3            | 204         | $ppm/(cm^3/s)$            |                                                    |  |
| Flow rate (liquid)  | DL     | 68    | LiNbO <sub>3</sub> | 105         | $ppm/(mm^3/s)$            |                                                    |  |
| Liquid viscosity    | DL     | 30    | LiNbO 3            | 2.7         | ppm/cP                    |                                                    |  |
| Liquid density      | DL     | 6     | $ZnO/Si_XN_V$      | 30000       | $ppm/(g/cm^3)$            |                                                    |  |
| Electric field      | DL     | 900   | LiNbO <sub>3</sub> | 141         | $ppm/(V/ \mu_m)$          |                                                    |  |
| (normal)            | R      | 85    | $Li_2B_4O_7$ on    | 300         | $ppm/(V/\mu m)$           |                                                    |  |
|                     |        |       | piezoceramic       |             | rr (())                   |                                                    |  |
| Electric field      | DL     | 1000  | LiNbO 3            | 120         | $ppm/(V/\mu_m)$           |                                                    |  |
| (transv.)           |        |       | -                  |             |                           |                                                    |  |
| Voltage             | DL     | 900   | LiNbO 3            | 0.93        | ppm/V                     | From :                                             |  |
| Liquid conductivity | DL     | 51    | LiTaO 3            | 13400       | ppm/(S/m)                 | G. Fischerauer, "Surface Acoustic Wave Devices,"   |  |
| Magnetic field      | DL     | 140   | Fe-B/ Quartz       | 0.38        | ppm/(A/m) III. W          | R Iones (Eds)                                      |  |
| Temperature         | DL     | 43    | LiNbO <sub>3</sub> | 92.13       | ppm/°C                    | Sensors. A Comprehensive Survey, Vol. 8. Weinheim: |  |
| Radiation dose      | R      | 199   | Quartz             | 0.48        | ppm/(J/kg) <sup>0.5</sup> | VCH, 1995                                          |  |
| Thin film thickness | DL     | 75    | LiNbO <sub>3</sub> | 9.25        | ppm/nm                    | (References: see there)                            |  |

## ected SAW ical sensors m literature

## Outline

- Introduction: Classical SAW Sensors
- SAW Radio Request
- SAW Identification Tags
- SAW Radio Requestable Sensors
- Application Examples
- Conclusion



### **Operating Principle of Wireless Identification or Sensor Systems**





# Separation of the sensor response from the request signal



L. Reindl, TU Clausthal, IEI, Page 23

### **Operating Principle of Wireless SAW -Identification or Sensor Systems**



#### advantages:

- wireless read out, read out distance  $\sim$  m
- transponder is passive & maintenance free
- free of ageing ("Quartz-stable")

# The time division of the RF response of a SAW transponder





### **Design of Reader Units**

The reader units of wireless SAW identification or sensor systems applications resemble those used in traditional radar, and all designs used in radar technologies can be applied:

#### Time domain sampling using pulse radar

- + suitable for measuring with a high dynamic resolution of fast changing or moving objects
- + very simple duplexer by using a switching device
- expensive due to the necessity of fast sampling and fast signal processing devices
- low range due to a low duty cycle

#### Time domain sampling using a chirp radar

same as a pulse radar, but with an increased range, because the TB-product improves the duty cycle
<u>Restriction</u>: Only medium processing gains are possible: B is restricted by the operating bandwidth of the SAW transponders, and T is restricted by the initial delay of the transponders

#### Frequency domain sampling using a network analyser structure

- + low cost and low speed standard components
- + lower demand on the signal processing devices
- + high range due to maximum duty cycle
- suitable only for measuring low speed changing or moving objects
- only a circular device or two separated antennas as duplexer is possible
- a high dynamic range of the receiver architectures is necessary

#### Frequency domain sampling using a FMCW design

same as a network analyser structure, but with a higher dynamic resolution due to the improved measuring speed
<u>But:</u> A high speed Fourier Transform is needed

## Reader units utilizing time domain sampling

## High speed, but high cost due to fast components



... assuming fast changing measurands:

- the frequency band is transmitted in one burst
- the duty cycle may be enhanced by using chip signals
- need a fast sampling of the response signal

# Reader units utilizing frequency domain sampling

## very low speed, low cost standard components



... assuming slowly changing measurands:

• the frequency of the transmitted bursts is varied step by step C1rcu

Circuitry is like a network analyser

L. Reindl, TU Clausthal, IEI, Page 28

### **Reader units utilizing a FMCW principle**



# Modular structure of reader units in a FMCW radar system

#### **DSP Unit**

- FFT
- Communication
- System configuration
- FPGA programming

#### **Baseband Unit**

- generates the frequency modulation
- A/D converter of the echo signal (time domain)
- controls Aux I/O

#### **RF Unit**

- transmits (Tx) and receives (Rx) in the 2.45 GHz ISM Band
- mixing of Tx / Rx



# Extended Block diagram of a time domain sampling reader unit

Noise Figure

5 dB



# Reader Unit operating at 2.45GHz, built up using standard ICs.

**RF** printed circuit board



# RF part of a Reader Unit operating at 434MHz





# Folded spiral antenna for the 434 MHz band





Geometry with ground plane



Antenna in a steel package filled with polymer (diameter = 20mm).

## ID System OIS-W





# A company of the **Baumer** electric Group



## **Estimation of the request distance**


## Multiple access of SAW radio sensors

With only one sensor in the beam of the reader unit, everything is fine:



### More than one... ???



### Outline

- Introduction: Classical SAW Sensors
- SAW Radio Request
- SAW Identification Tags
- SAW Radio Requestable Sensors
- Application Examples
- Conclusion



## Schematic layout of a SAW ID tag with several transducers wired together to a common bus bar



Good design for quartz materials and other substrates with small dielectric and piezoelectric constants

### Schematic layout of a reflective SAW tag



L. Reindl, TU Clausthal, IEI, Page 41

## SAW ID tag with every reflector arranged in a separate track



+No close multi reflections

+No dependence of actual bit level on precursors

- need reflectors with high reflectivity

----- need a transducer with a huge aperture



# SAW ID tag where all reflectors are arranged in the same acoustic track



# Layout of typical transducers for SAW ID tags and radio requestable sensors





split finger transducer

pitch:  $\lambda/4$ 



unidirectional transducer



pitch:  $\lambda/4$  and  $\lambda/8$ 



### Layout of reflectors



# Schematic of triple reflection resulting in a delayed spurious signal





# Loss of a 33 bit ID-tag as a function of the number of reflectors lined up in one track



Design parameter:

• Amplitude weighting (ON/OFF)

• 33 bits

- dynamic (IL(ON)/IL(OFF)>20dB)
- propagation loss between two contiguous reflectors 0.38dB

• loss due to passing twice a reflector 0.75dB

### Layout, Photo and measurements of a mounted SAW ID tag comprising 33 reflectors in 4 tracks ( $f_0 = 2.45$ GHz) (Amplitude Coded)



## Coding Schemes

#### • Amplitude Coding (ON/OFF)

- + insensitive on small velocity variations
- + temperature effects can be eliminated using a start and stop bit
- ± problems with the uniformity can be avoided by using special OFF structures with the same damping but no reflective properties than ON structures
- high insertion loss due to the high amount of reflectors (and also due to the OFF structures)

#### Phase Coding

- + 2PSK: lower bit error rate by using a 2-PSK coding scheme than by ON/OFFamplitude coding with the same signal-to noise-ratio
- + 4-PSK and higher coding schemas are possible, which reduces the total amount of reflectors / symbols
- very sensitive to small velocity variations
- temperature effects have to be cancelled very carefully

#### • Pulse Position Coding

- + higher coding schemas are possible
- + insensitive on small velocity variations and temperature variations
- + small insertion loss due to the small amount of reflectors used

# Layout and Photo of a mounted SAW ID tag comprised of 5 reflectors in one tracks (f0 = 2.45 GHz) using pulse position coding



#### **Baumer** electric



### Outline

- Introduction: Classical SAW Sensors
- SAW Radio Request
- SAW Identification Tags
- SAW Radio Requestable Sensors
  - (Reflective) Delay Lines
  - Resonators
  - (Reflective) Dispersive Delay Lines
  - Non-linear Sensors
- Application Examples
- Conclusion



## Photo of a mounted SAW radio readable temperature sensor and corresponding time domain response



#### **Time domain response**



phases in a polar chart

### Evaluation of the phase difference



... enhances the time resolution by a factor of 100 and

yields to a relative resolution of 10<sup>-5</sup> to 10<sup>-6</sup>.

### **SAW Sensors using a Delay Line Configuration**

In most sensing applications using a delay line a differential arrangement is applied and the change  $\Delta$  in the difference of

$$\tau_{2-1} = \tau_2 - \tau_1 \phi_{2-1} = \phi_2 - \phi_1$$

between two signals (#1) and (#2) is evaluated. For  $\Delta \tau_{2-1}$  and  $\Delta \phi_{2-1}$  we get:

$$\Delta \tau_{2-1} = \left[ \tau_2(\mathbf{y}_0) \mathbf{S}_{\mathbf{y},2}^{\tau} - \tau_1(\mathbf{y}_0) \mathbf{S}_{\mathbf{y},1}^{\tau} \right] \Delta \mathbf{y}$$
$$\Delta \varphi_{2-1} = \left[ \varphi_2(\mathbf{y}_0) \mathbf{S}_{\mathbf{y},2}^{\varphi} - \varphi_1(\mathbf{y}_0) \mathbf{S}_{\mathbf{y},1}^{\varphi} \right] \Delta \mathbf{y}$$



or

### **SAW Sensors using a Delay Line Configuration**

If the sensitivities  $S^{\tau}_{y,2}$  and  $S^{\tau}_{y,1}$  for the signals (#1) and (#2) are equal, we get

$$\Delta \tau_{2-1} = \tau_{2-1} \cdot S_y^{\tau} \cdot \Delta y$$
$$\Delta \varphi_{2-1} = 2\pi f \Delta \tau_{2-1} = 2\pi \cdot f \Delta \tau \cdot S_y^{\tau} \cdot \Delta y$$
$$2 \cdot (number of acoustic wave-lengths between both reflectors), typical several hundreds$$

The phase difference can be determined and measured very accurately. Thus the evaluation of the phase provides a high sensitivity.



### Switch able SAW Tag operating at 2,45 GHz



L. Reindl, TU Clausthal, IEI, Page 56

## Special reflective delay line: SAW device combined with an external classical sensor





## Layout of a SAW Device which can be combined with an external classical sensor



Reflector #2 is built up as transducer. The electrical port of the transducer can be loaded with the impedance of an external classical sensor. Therefore, the acoustical reflection of reflector #2 becomes a function of the applied complex load impedance, which is given by the external sensor element.



### Typical Impulse Response



L. Reindl, TU Clausthal, IEI, Page 59

## Measured acoustic reflectivity of a split finger IDT as a function of the applied electrical load



L. Reindl, TU Clausthal, IEI, Page 61

### **Binary SAW Sensors**



- sector alignment indicators
- radio accessible switches
- readout of classical sensors with varying impedance



# Schematic block diagram of a semi-active SAW tag using IDT reflectors



#### **Circuitry for dynamic switching of one IDT reflector**



## Photo of a mounted SAW chip in a hybrid commutator network for switching 8 IDT reflectors



## Measurements of the switching states of the switchable SAW ID-Tag shown in the last chart



# Schematic drawing of a SAW resonator used as radio requestable sensor



#### Number of stored wavelengths $n_{\lambda} \sim Q_{loaded}$



L. Reindl, TU Clausthal, IEI, Page 67

# Signal Processing: Evaluating the Resonant Frequency of Resonators



L. Reindl, TU Clausthal, IEI, Page 68

### **Resonator Mathematics**

The change in centre frequency f and phase  $\varphi$  is given by:

$$\Delta f = - f \cdot S^{\tau} \cdot \Delta y$$
$$\Delta \varphi = 2\pi \cdot Q \cdot S^{\tau} \cdot \Delta y$$
$$Q_{OFW} \approx 10\,000$$

Same sensitivity as a delay line, but significant reduction of chip size



### **High-Q Dielectric Resonators**





#### ceramic substrate

The resonator is stimulated by a RF signal, the decaying signal is detected after switching off the stimulus. e.g. for high temperature measurements

... utilizing the temperature shift of the resonance of a dielectric microwave resonator.

## Special Radio Readable Resonator: Pulling of the SAW Resonator with an External Sensor





## Dispersive Delay Line - Principle


### **Dispersive Delay Line - Mathematics**

$$\Delta \tau (\Delta y) = \tau_0 S_y \Delta y \pm \frac{T}{B} \Delta f (\Delta y)$$

$$= \tau_0 \left[ 1 \mp \frac{T f_0}{\tau_0 B} \right] S_y^{\tau} \Delta y$$
sensitivity of a delay line
$$\Delta \varphi_{2-1} = S_{delay \ line} \cdot S_y^{\tau} \cdot \Delta y$$

## **Dispersive Delay Line - Effect**



### **Dispersive Delay Line - Measurement**





## Outline

- Introduction: Classical SAW Sensors
- SAW Radio Request
- SAW Identification Tags
- SAW Radio Requestable Sensors
- Application Examples
  - ID Tags
  - Temperature Sensors
  - Mechatronic Sensors
  - Current Sensors
  - Water Sensors
  - Conclusion

Technische Universität Clausthal

### Application of fixed coded or writeable tags





#### Schematic of a master-slave control system: **fixed coded** tags are sufficient

Schematic of a material accompanying control system: write able tags are needed

#### **Application of SAW ID-Tags a Norway Toll System**





## OFW ID System SOFIS installed on the

#### Munich Subway System



SAW ID-Tag mounted on each subway car

### antenna of the 2.45 GHz interrogation unit



#### Tag housing

#### SAW Identifikation Systems **Baumer**////DENT for Manufacturing/ Logistics Management



**Reader Unit** 



long readout distance, high temperature stability

**SAW ID-Tags** 

 highly flexible assembly set-up,
 only one single ID system for entire production process

#### **SAW Temperature Sensors**

$$\frac{\Delta \tau}{\tau} = \left(\frac{1}{l}\frac{\Delta l}{\Delta T} - \frac{1}{v}\frac{\Delta v}{\Delta T}\right)\Delta T = \text{TCD}_1 \cdot \Delta T$$

$$\Delta \varphi = 2 \pi f_0 \Delta \tau$$



## Phase difference between 3 selected reflectors on LiNbO<sub>3</sub>-YZ-Cut versus temperature



#### Brake temperature of a train entering a station

reader antenna



# Measurement of the rotor temperature in a 11 kW asynchronous motor



#### Online Temperature Monitoring System for High-Voltage Surge Arresters



### **Field Test Results**



between temperature and absorbed energy



- •Up to 200°C standard assembly, interconnect and package techniques can be used.
- •Up to 350°C aluminium can be used for electrodes material
- •LINBO<sub>3</sub> can not be used for temperatures higher than 400°C for short time and 300°C for long time operation.

## Delay line for testing the high temperature features of Langasit (La<sub>3</sub>Ga<sub>5</sub>SiO<sub>14</sub>)



#### IDTs made with 50 nm Platinum on 4 nm Titanium



### High Temperature SAW Sensors with Platinum Electrodes on Langasit (La<sub>3</sub>Ga<sub>5</sub>SiO<sub>14</sub>)

Test chip at room temperature





#### Increase in Insertion Loss of a Delay Line on X,Y-Langasit (La<sub>3</sub>Ga<sub>5</sub>SiO<sub>14</sub>) with Pt-electrodes with Increasing Temperature



## SMD - packaging with W/Ni/Au-metallization before heating







# Wirelessly Readable Passive Sensors for Force and Mechanical Displacement



- ... if a mounting is chosen, which lets forces act on the SAW chip to bend it, we get a wirelessly readable passive sensor for force or mechanical displacement.
- ... due to the bending of the substrate, both the surface's length and the elasticity constants are changed.

The dynamic range of monitoring the forces with SAW can be up to several tenths of kHz



### **SAW Torque Sensor**





### **SAW Rotary Torque Sensor**





A SAW pressure sensor type, which uses a direct bending of the SAW chip, results in a resolution of about 1% of full range.

#### **SIEMENS** tire pressure sensor, presented by G. Schimetta transceiver unit



bond wires



## Schematic drawing of an experimental SAW bending beam



The friction coefficient between a car tire and the road surface, which is a key parameter when stabilising a vehicle in critical situations, can be measured by evaluating the mechanical strain in the tire surface contacting the road. This can be done by monitoring the deforming of the tread elements.

Intelligent tire due to a sensor in the tire / road contact area

# SAW sensor for tire friction control





## Radiography of a tire with integrated



SAW sensor integrated into a standard tire



#### SAW sensor for tire friction control

The deformation of a profile element gives information of the friction coefficient between dry road surface tire and road



800

800

900

900

# A radio requestable SAW accelerometer can be attained if seismic mass is added

SAW accelerometer configurations:





L. Reindl, TU Clausthal, IEI, Page 103

#### **SAW Current Sensors**



# Sketch of a tire wear sensor using a GMI wire and magnetize able particles





### Water Content Sensor: Scenario



#### Schematic of the SAW Water Content Sensor



# Schematic of the Water Content Sensor Electrodes (Rods) and Corresponding Matching Circuitry




#### Electrical Reflection Coefficient of the Sensor Electrodes (including Matching Circuitry) versus Water Content

Change of the permitivity ε' of sandy soil with increasing water content





### **Two Measurements**

Dry Soil (7 %)

Moist Soil (21 %)



### Amplitude and Phase Differences of the Echo Signals of Reflector #2 and #1



# Outline

- Introduction: Classical SAW Sensors
- SAW Radio Request
- SAW Identification Tags
- SAW Radio Requestable Sensors
- Application Examples
- Conclusion



#### The potential of remotely read SAW sensors

Monitoring of physical and chemical quantities in inaccessible or hazardous zones (heat, cold, moving parts, high voltage, radiation, vacuum, poison, behind concrete, danger of explosion).

#### **Examples:**

- Identification marks (cars, persons, ...)
- Temperature of moving parts (drives, turbine blades, rotating anodes) or in vivo
- Torque of a rotating shaft
- Force, pressure, light, corpuscular radiation, contamination, current, voltage, humidity, ...
- Burning off in high-power switches
- Chemical concentration in closed containers or in waste water
- Numbered sensors (identification function), "read-me flag", positioning sensors
- Hybrid devices comprising variable-impedance elements and SAW devices



## Resolution of SAW Passive Wireless Remote Sensing

| measurand                         | physical effect                  | resolution |
|-----------------------------------|----------------------------------|------------|
| identitification                  | analysis of signal               | 32 Bit     |
| temperature                       | variation of SAW velocity        | 0.1 K      |
| mechatronic measurands (pressure, | variation of elastic constants   | 1% of full |
| torque, acceleration, tire-road   |                                  | scale      |
| friction)                         |                                  |            |
| impedance sensors                 | variation of amplitude and phase | 5% of full |
|                                   | of reflected signal              | scale      |
| distance                          | signal delay                     | 20cm       |
| relative position                 | continuous measurement of        | 2cm        |
|                                   | Doppler phase                    |            |
| angular positioning               | measurement of Doppler phase     | 3 degrees  |



Technische Universität Clausthal

## Conclusion

- The generation and the physical properties of SAWs,
- the operating of a SAW identification system,
- the design of SAW ID tags and radio sensors
- applications of SAW ID tags
- and SAW radio readable sensors
  has been presented.

Technische Universität Clausthal

TI TITU