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Motivation

• Many sensors (e.g. thermopiles, bridges, hall 
sensors) output DC signals in the millivolt range

• These signals are best processed on-chip

• However, the offset of basic IC amplifiers is also in 
the millivolt range, especially in CMOS

• Therefore, special techniques are required to 
reduce the offset of IC amplifiers
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Differential Amplifiers

Differential amplifiers are widely 
used to amplify DC signals

Balanced structure is
• Nominally offset free
• Rejects common-mode and 

power supply interference
• Easily realized in both CMOS 

and bipolar technologies
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Offset in Differential Amplifiers

Component mismatch ⇒ offset
e.g. R1≠R2, M1≠M2

Mismatch is mainly due to
• Process variation
• Lithographic errors

All other things being equal:
Bipolar ⇒ Vos ~ 0.1mV
CMOS ⇒ 10 -100 times worse!
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Drift and Noise

Drift 
• Temperature, ageing and packaging stress cause 

time-varying offset
• Trimming bipolar DA’s reduces both offset and 

temperature drift [1]. Not true of MOSFETs!

1/f (or flicker) noise
• MOSFETs are worse than bipolar transistors
• Varies inversely with transistor area
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Amplifier Behaviour Near DC

Characterized by
• Offset
• Drift
• 1/f noise
• PSRR, CMRR
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What to Do?

Offsets and 1/f noise are part of life

But we can reduce offset “enough” by
1. Using “large” devices and good layout [2]
2. Trimming (bipolar) or by 
3. Dynamic offset-cancellation (DOC) techniques

DOC techniques also reduce 1/f noise!



9Smart Sensor Systems ’02 Kofi A.A. Makinwa

Trimming

External potentiometers
• Extra component and extra pins

In IC technology [3]
• Laser trimming
• Component switching

Zener zapping
Fusible links
PROM

Trimming ⇒ extra test infrastructure
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DOC Techniques

Chopping

Continuous time

Modulate offset 
away from DC

Auto-zeroing

Sampled data

Sample offset, 
then subtract 

Switches required  ⇒ CMOS or BiCMOS
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DOC Techniques Versus Trimming

+ reduction of offset and 1/f noise
+ excellent long term stability
+ no additional costs for testing

- reduced bandwidth
- increased circuit complexity
- aliasing & intermodulation issues
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Auto-zero Principle

• S1,2 closed ⇒ amplifier offset is stored on Caz

• S3 closed ⇒ output signal is available
• Residual offset ~ Vos/A
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Charge Injection (1)

Occurs when MOSFETs switch OFF 
Consists of two components
1. Channel charge, Qch= WLCox(VGS-Vt) 
2. Overlap capacitance between the gate and the 

source/drain diffusions
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Charge Injection (2)

Error voltage depends on [4,5]
• Source impedance
• Transistor area (WL)
• Value of Caz

• Clock amplitude & slew rate
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Switched Capacitor Amplifier (1)

• During the auto-zero phase, the offset of A1 and A2
is stored on C1,2
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Switched Capacitor Amplifier (2)

• During the next phase, Vin is amplified
• Differential topology ⇒ 1st order cancellation of 

charge injection errors
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Residual Offset of Auto-zeroing

Determined by
• Charge injection
• Leakage on Caz

• Limited amplifier gain & bandwidth (fc)

In practice
• Caz as large as possible (sometimes external)
• Multi-stage amplifier topologies
• fc >> sampling frequency fs
• Residual offsets of 1-10µV
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Residual Noise of Auto-zeroing (1)

Vn,az(f) = Vn(f)*(1 - H(f))

H(f) is the frequency
response of the S&H

H(f) = sinc(f) 
⇒ 1-H(f) is a HPF
⇒ Offset and 1/f noise

reduction!
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Residual Noise of Auto-zeroing (2)

• Since noise bandwidth B > fs  ⇒ input noise is 
folded back to DC

• The result is LP filtered by the Hold function
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Residual Noise of Auto-zeroing (3)

• 1/f noise is removed but noise foldover occurs [6]
• For a 1st order LPF, B = πfc/2
• State of the art is 48nV/√Hz [7]
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Digital Trimming

• Auto-zero at power on [8]
• No reduction of 1/f noise
• But no bandwidth limitation
• Residual offset determined by D/A resolution
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The 3 Signal Method

• Phase 1: V1 = A(Vos+ Vin)
• Phase 2: V2 = A(Vos+ Vref)
• Phase 3: V3 = AVos

⇒ A,Vos and Vin can be calculated

• Easy to implement if a µC is available
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Chopping Principle

Signal is modulated, amplified and then 
demodulated again [9]

+ Output signal is continuously available
- Low-pass filter required
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Square-wave Modulation

• Easily generated modulating signal
• The modulator is a polarity-reversing switch
• Switches are easily realized in CMOS 
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Chopping in the Frequency Domain
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Residual Noise of Chopping

• 1/f noise is completely removed provided [6]    
fch > 1/f corner frequency

• Significantly better than auto-zeroing!
• State-of-the-art is 8.5nV/√Hz [10]
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Chopping in the Time Domain

• Clock duty-cycle should be exactly 50% ⇒ ÷2
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Bandwidth & Gain Accuracy

• Limited BW reduces effective gain
• Aeff = Anom(1-4τ/T) for a 1st order LPF,       

where fch = 1/(2πτ) and τ << T
• T/τ = 40 ⇒ 10% error!
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Chopper Opamp

• Feedback resistors ⇒ Accurate gain [11,12]
• Offset is modulated, not the signal!
• To suppress Vos2, A1 should have high gain
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Residual Offset of Chopping (1)

• Due to charge injection at the input chopper
• Causes a typical offset of a few µV
• Input spikes ⇒ bias current (a few tens of pA) 
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Residual Offset of Chopping (2)

• Residual offset = 2fch Vspike τ
• Linearly dependent on chopping frequency fs
• Spike time constant τ will vary with source 

impedance
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Band-pass Filtering

• BP (LP) filter reduces spike amplitude [10,13]
• Clock frequency tracks BP fillter’s center frequency 
⇒ low filter Q ~ 5

• Residual offset  < 1µV!
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Nested Chopper

• Inner chopper removes 1/f noise
• Outer chopper removes residual offset [11,14]
• Residual offset ~ 100nV!
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Chopper With Guard Band

• During guard-band, output is shorted [15,16] or 
tri-stated [17]

• Residual offset ~ 200nV!
• Slightly worse noise performance
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Smart Thermal Wind Sensor

• Airflow induces a temperature gradient in chip
• Thermopiles are read-out by auto-zeroed comparators 

in a null-balance configuration [18]
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Smart Magnetic Field Sensor

• Hall-plate is read-out using spinning-current & nested 
chopper techniques [19]

• Courtesy of A.Bakker, Philips Semiconductors, Delft
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Smart Temperature Sensor

• ∆Vbe ~ kT/q read-out using nested chopper technique 
⇒ ±1°C uncalibrated accuracy [14,20] 

• Courtesy of A.Bakker, Philips Semiconductors, Delft 
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Smart Calorimetric Gas Sensor

• Calorimetric sensor read-
out using BP chopper [21]

• Courtesy of C. Hagleitner, 
Physical Electronics 
Laboratory, ETH, Zurich
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Summary

• Mismatch and offset are part of life

• Trimming reduces offset but not the noise

• Auto-zeroing only reduces LF noise, but does 
not limit amplifier bandwidth

• Chopping eliminates LF noise, but limits 
amplifier bandwidth
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