Title: Nonlinear dynamics in microelectromechanical systems

Abstract: Nonlinear phenomena in microelectromechanical systems (MEMS) are ubiquitous, and stem from a variety of sources. The understanding of these effects is essential for developing accurate device models providing physical insights underpinning performance / robustness optimisation, and may be harnessed to design devices with new principles of operation demonstrating significantly improved performance. This will be illustrated through a number of case studies – (1) the interaction between noise processes and resonator nonlinearities in a feedback oscillator [1], (2) leading to limitations on the output stabilities for resonant accelerometers [2], (3) resonators demonstrating double hysteresis characteristics with competing nonlinear effects [3], (4) the principle of parametric resonance applied to the design of wideband vibration energy harvesters [4], (4) nonlinear modal coupling in standalone micromechanical resonators [5] leading to the generation of (5) phononic frequency combs [6] enabling applications such as the stable tracking of resonant frequencies in physical sensors without the requirements for an external feedback oscillator [7], (6) electrically tuneable parametric mode coupling in electrostatically driven gyroscopic ring resonators [8].

References:


4. Y. Jia, S. Du and A. A. Seshia, Twenty eight orders of parametric resonance in a microelectromechanical device for vibration energy harvesting, Scientific Reports, 6, 30167, 2016.


8. X. Zhou et al., Dynamic modulation of modal coupling in microelectromechanical gyroscopic ring resonators, Nature Communications, 10(1), 1-9, 2019.