Unconventional Excitation of Interfaces Enables Exquisite Gas Sensing For Our Sustainable Future Summary for a proposed lecture topic 02

As our society is developing solutions for more sustainable types of energy, the need for reliable, yet affordable tools for monitoring of emissions of greenhouse and other gases in urban and industrial environments is a substantial undertaking for two main reasons. *First*, to achieve a desired accuracy, existing gas monitoring solutions in complex backgrounds utilize traditional analytical instruments. While their mathematical design principles provide needed independent response outputs, their hardware design principles do not allow cost-effective ubiquitous implementations. *Second*, all gas sensors based on interface-driven interactions between gases of interest and sensing materials are single-output devices. By their original design principles from early last century, these sensors operate well only when levels of interfering gases are low. Once levels of interfering gases increase, existing sensors lose their accuracy because of competing responses of the sensor interface to numerous interfering gases and sa gas of interest.

In this lecture, we will present gas sensors that we built following mathematics of traditional analytical instruments but with our own different types of independent variables for detection of multiple gases with enhanced accuracy and stability. These sensors are multivariable gas sensors where independent response outputs are provided by our unconventional methodologies of excitation of interfaces between a sensing material and different ambient gases. We will show that our approach results in a reliable differentiation of one or more analyte gases in complex backgrounds of interfering gases with an individual multivariable gas sensor. This exquisite (i.e., accurate and reliable) gas sensing provides an affordable technical solution for monitoring of emissions of greenhouse and other gases in urban and industrial environments. Such technical solution is mathematically not feasible using conventional single-output sensor designs. The societal impact of these results is in opening opportunities for more proactive developments of several types of multivariable gas sensors in diverse emerging monitoring applications, ranging from urban pollution and industrial safety to medical diagnostics and homeland protection.